

SIES College of Arts, Science & Commerce (Autonomous)

Department of Statistics

Faculty: Science

Program: B.Sc.

Course: Statistics

Syllabus for F.Y.B.Sc.

(Credit Based Semester and Grading System with effect from the academic year 2022–2023)

SEMESTER I

THEORY

TITLE OF COURSE	DESCRIPTIVE STATISTICS I			
COURSE CODE	UNIT	TOPICS	LECTURES/ WEEK	CREDITS
	I	TYPES OF DATA AND DATA CONDENSATION	1	
PAPER I SIUSSTA11	II	MEASURES OF CENTRAL TENDENCY	1	2
	III	MEASURES OF DISPERSION, SKEWNESS & KURTOSIS	1	
TITLE OF COURSE	STATISTICAL METHODS I			
COURSE CODE	UNIT	TOPICS	LECTURES/ WEEK	CREDITS
PAPER II SIUSSTA12	I	ELEMENTARY PROBABILITY THEORY	1	
	II	RANDOM VARIABLES	1	2
	Ш	STANDARD DISCRETE DISTRIBUTIONS	1	

PRACTICAL

COURSE CODE	PRACTICALS BASED ON	LECTURES/ WEEK	CREDITS
SIUSSTAP1	SIUSSTA11	3	2
SIUSSIAFI	SIUSSTA12	3	2

SEMESTER II

THEORY

TITLE OF COURSE	DESCRIPTIVE STATISTICS II			
COURSE CODE	UNIT	TOPICS	LECTURES/ WEEK	CREDITS
DADED I	I	CORRELATION AND REGRESSION ANALYSIS	1	
PAPER I SIUSSTA21	II	TIME SERIES	1	2
	III	VITAL STATISTICS	1	
TITLE OF COURSE	STATISTICAL METHODS II			
COURSE CODE	UNIT	TOPICS	LECTURES/ WEEK	CREDITS
	I	STANDARD CONTINUOUS DISTRIBUTIONS	1	
PAPER II SIUSSTA22	II	ESTIMATION	1	2
	III	TESTING OF HYPOTHESIS AND LARGE SAMPLE TESTS	1	

PRACTICAL

COURSE CODE	PRACTICALS BASED ON	LECTURES/ WEEK	CREDITS
SIUSSTAP2	SIUSSTA21	3	2
	SIUSSTA22	3	2

SYLLABUS FOR F.Y.BSc. UNDER AUTONOMY SEMESTER I PAPER I

- To be well versed with data collection techniques.
- To effectively use data visualization and summarization techniques to understand data.

Course Code	Title	Credits
SIUSSTA11	DESCRIPTIVE STATISTICS I	2 Credits
		(45 lectures)
UNIT I: TYPI	ES OF DATA AND DATA CONDENSATION	15 Lectures
Types of data:	Qualitative and Quantitative data, Time series data and cross section	
data, discrete a	nd continuous data. Different types of scales: nominal, ordinal,	
interval, and ra	tio. Experimental and observational data.	
Concept of pop	oulation and sample. Census and Sample survey. Relative merits and	
demerits. Statis	stical Organizations and their functions (CSO, NSSO). Survey findings.	
Primary data: 0	Concept of a questionnaire and a schedule. Secondary data: Sources.	
Case studies ill	ustrating use of Statistics in different sectors.	
Diagrams: Bar	diagrams, Pie diagram	
Classification a	and Tabulation of categorical data up to order three. Association of	
attributes: Yule	e's coefficient of association (Q), Yule's coefficient of Colligation (Y).	
UNIT II: ME	ASURES OF CENTRAL TENDENCY	15 Lectures
Univariate freq	uency distribution of discrete and continuous variables. Cumulative	
frequency distr	ibution. Graphical representation of frequency distribution by	
Histogram, Frequency curve, Cumulative frequency curves, Stem and leaf diagram.		
Central tenden	cy of data. Requisites of a good measure of central tendency. Positional	
averages: Median, Mode, Partition Values: Quantiles. Mathematical averages:		
Arithmetic mean (Simple mean, trimmed mean, weighted mean, combined mean),		
Geometric mea	in, Harmonic mean. Merits and demerits of different measures.	
UNIT III: ME	ASURES OF DISPERSION, SKEWNESS & KURTOSIS	15 Lectures
Concept of disp	persion. Requisites of good measure of dispersion.	
Absolute meas	ures of dispersion: Range, Quartile Deviation, Mean absolute	
deviation, Standard deviation, and corresponding relative measures of dispersion.		
Combined vari	ance.	
Raw & Central	moments and relationship between them.	
Concept of Ske	ewness and Kurtosis: Absolute and Relative measures of Skewness:	
Karl Pearson's, Bowley's and Measure based on moments. Measure of Kurtosis based		
on moments.		
Box &Whisker	Plot.	

SEMESTER I: PRACTICALS BASED ON COURSE SIUSSTA11

1.	Tabulation
2.	Theory of Attributes
3.	Classification of Data
4.	Diagrammatic and Graphical Representation
5.	Measures of Central tendency
6.	Measures of Dispersion
7.	Moments, Measures of Skewness and Kurtosis

PAPER II

- To understand the concepts of probability and probability distribution
- To study the concept of random variables-Discrete & Continuous

Course	Title	Credits
Code		
SIUSSTA12	STATISTICAL METHODS I	2 Credits
		(45 lectures)
UNIT I: ELE	MENTARY PROBABILITY THEORY	15 Lectures
Random exper	iment, Sample space, Event, Operation of events, mutually	
exclusive and	exhaustive events.	
Classical (Mat	hematical), Empirical (Statistical) definitions of Probability and	
	s. Subjective probability.	
	Addition and Multiplication of probabilities.	
	of events, pairwise and mutual independence of three events.	
	obability, Bayes' theorem.	
	NDOM VARIABLES	15 Lectures
Concept of dis	crete & continuous random variables: Probability distribution and	
cumulative dis	tribution function, definition, and their properties.	
Expectation of a random variable. Theorems on Expectation & Variance.		
Raw and Centr	ral moments and their relationships (up to order four).	
Concepts of Sk	xewness and Kurtosis. Joint (Bivariate) probability distribution of	
two discrete &	continuous random variables. Marginal and conditional	
distributions. C	Coefficient of Correlation. Independence of two random variables	
for both discre	te and continuous random variables.	
UNIT III: STANDARD DISCRETE DISTRIBUTIONS		15 Lectures
Discrete Unifo	rm, Hypergeometric, Binomial and Poisson distributions: mean,	
variance and re	ecurrence relation for probability, fitting of distribution.	
	oximation to Hypergeometric distribution. Poisson approximation	
to Binomial di		

SEMESTER I: PRACTICALS BASED ON COURSE SIUSSTA12

1.	Probability
2.	Random Variable -Discrete
3.	Random Variable -Continuous
4.	Bivariate probability distributions
5.	Standard Discrete Distribution-Binomial
6.	Standard Discrete Distribution-Poisson
7.	Standard Discrete Distribution-Hypergeometric

SYLLABUS FOR F.Y. BSc. UNDER AUTONOMY

SEMESTER II PAPER I

- To forecast and predict future trends in time series.
- To explore the concept of vital statistics to study the population movement.

Course Code	Title	Credits
SIUSSTA21	DESCRIPTIVE STATISTICS II	2 Credits
		(45 lectures)
	RELATION AND REGRESSION ANALYSIS	15 Lectures
_	ency distribution, marginal and conditional distribution, Scatter	
	ble chart. Product moment correlation coefficient and its properties.	
_	ink correlation (with and without ties).	
	on. Fitting a straight line by method of least squares. Coefficient	
	on .Relation between regression coefficients and correlation	
coefficient.		
_	es reducible to linear form by transformation. Fitting a quadratic	
	od of least squares.	
UNIT II: TIM		15 Lectures
	me series. Its components. Models of time series.	
-	moothing method.	
	rend by: Freehand curve, Method of semi averages, Method of	
Moving averages, Method of least squares (linear trend only).		
	nerits of these methods.	
Estimation of seasonal component by, Method of simple averages, Ratio to		
	e method, Ratio to trend method.	
	TAL STATISTICS	15 Lectures
	es of vital statistics, Methods of obtaining vital statistics.	
Measurement of population, Rates & Ratios of vital events.		
Measurement of mortality: Crude Death rate, Specific death rates, Infant		
Mortality rate, Standardized death rate		
Measurement of fertility: Crude birth rate, General Fertility rate, Specific fertility		
rate, Total ferti		
Measurement of		
index), Gross r		
Merits & Dem	erits of all measurements.	

SEMESTER II: PRACTICALS BASED ON COURSE SIUSSTA21

1.	Correlation analysis
2.	Regression analysis
3.	Correlation & Regression analysis
4.	Curve fitting
5.	Time series I
6.	Time series II
7.	Vital Statistics-I
8.	Vital Statistics-II

PAPER II

- To interpret the Bell curve and other distributions used in data analysis.
- To assess population characteristics based on sample using estimation and testing theory.

Course Code	Title	Credits
SIUSSTA22	STATISTICAL METHODS II	2 Credits
		(45 lectures)
UNIT I: STAN	NDARD CONTINUOUS DISTRIBUTIONS	15 Lectures
Uniform, Expo	nential (with location, scale parameter) and Normal distribution.	
Derivations of	mean, median and variance of Uniform and Exponential	
distribution. La	ack of memory property of exponential distribution.	
Properties of N	formal distribution. Use of normal tables. Normal approximation to	
Binomial and I	Poisson distribution.	
UNIT II: EST	IMATION	15 Lectures
Parameter, stat	istic, estimator and estimate, sampling distribution, bias and	
standard error of an estimator.		
Central Limit theorem (statement only).		
Sampling distributions of sample mean and sample proportion. (For large sample		
only)		
Point and Interval estimate of mean and proportion based on single sample of		
large size and difference between two means and proportions based on large		
sample sizes.		
UNIT III: TES	STING OF HYPOTHESES AND LARGE SAMPLE TESTS	15 Lectures
Null and altern	ate hypotheses, Simple and composite hypothesis. Type I and II	
errors, Critical region, Size of the test, Level of significance. Power of the test.		
Applications of Normal Distribution: Tests for specified value of population		
mean and population proportion. Tests for equality of two population means and		
population prop	portions.	

SEMESTER II: PRACTICALS BASED ON COURSE SIUSSTA22

1.	Standard Continuous distributions
2.	Central limit theorem
3.	Testing of Hypothesis
4.	Point and Interval Estimation
5.	Estimation
6.	Testing of Hypothesis
7.	Large Sample Test

REFERENCES:

- 1. Agarwal B.L. (1978). Basic Statistics: New Age International Ltd.
- 2. David S.(1994). *Elementary Probability*: Cambridge University Press.
- 3. Goon A.M., Gupta M.K.&Dasgupta B. (1968). *Fundamentals of Statistics*, Volume II: The World Press Private Limited, Calcutta.
- 4. Gupta S.C.& Kapoor V.K.(2007). Fundamentals of Mathematical Statistics: Sultan Chand & Sons
- 5. Gupta S.C.& Kapoor V.K.(2014). Fundamentals of Applied Statistics: Sultan Chand & Sons
- 6. Hoel P.G.(1947). Introduction to Mathematical Statistics: Asia Publishing House
- 7. Hogg R.V. & Tannis E.P.(1977). *Probability and Statistical Inference*: McMillan Publishing Co. Inc.
- 8. Kothari C.R.(1985). Research Methodology: Wiley Eastern Limited.
- 9. Medhi, J. (2013). Statistical Methods, An Introductory Text. Second Edition: New Age International Ltd.
- 10. Pitan Jim. (1977). Probability: Narosa Publishing House.
- 11. Spiegel M.R. (1961). Theory and Problems of Statistics. Schaum's Publications series: Tata McGraw-Hill.

EXAMINATION PATTERN

Internal Assessment of Theory per Course per Semester

1. Class Test 20 Marks.

2. Project / Assignment / Presentation etc. 20 Marks.

Semester End Theory Examination per Course

At the end of the semester, examination of 2 hours duration and 60 marks based on the three units shall be held for each course.

Pattern of Theory question paper:

There shall be four compulsory questions of 15 marks each (with Internal Option).

Question 1 based on Unit I, Question 2 based on Unit II, Question 3 based on Unit III. Question 4 based on all three units.

Semester End Practical Examination per Course

1. Journal 10 Marks.

2. Practical Examination 40 Marks.

At the end of the semester, practical examination of 2 hours duration and 40 marks shall be held for each course.

Pattern of Practical question paper:

There shall be four compulsory questions of 10 marks each (with Internal Option). Question 1 based on Unit I, Question 2 based on Unit II, Question 3 based on Unit III. Question 4 based on all three units.